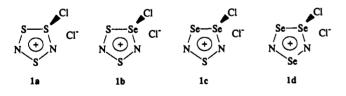
Synthesis and Characterization of Selenium-Nitrogen Chlorides: Force-Field Calculations for the Se₃N₂Cl⁺ Cation

Jari Siivari,^{1a,b} Tristram Chivers,^{*,1a} and Risto S. Laitinen^{1b}

Departments of Chemistry, The University of Calgary, Calgary, Alberta, Canada T2N 1N4, and University of Oulu, Linnanmaa, SF-90570 Oulu, Finland


Received February 4, 1993®

The explosive black solid 3-chloro-1,3,4,2,5-triselenadiazolium chloride, Se₃N₂Cl₂, has been prepared in high yield by three different reactions: (a) from [(Me₃Si)₂N]₂Se and a mixture of SeCl₄ and Se₂Cl₂ designed to give a Se:Cl ratio of 1:3, (b) from [(Me₃Si)₂N]₂Se and SeOCl₂ in a 1:2 molar ratio, and (c) from Me₃SiN₃ and Se₂Cl₂ in a 2:3 molar ratio. The related dimer $(Se_3N_2Cl)_2$ is obtained as an explosive dark brown powder by two routes: (a) from equimolar amounts of Se₄N₄ and Se₂Cl₂ and (b) from [(Me₃Si)₂]N]₂Se and a mixture of SeCl₄ and Se₂Cl₂ designed to give a Se:Cl ratio of 2:5. In all reactions the reagents were mixed in dichloromethane at -78 or -30 °C and then allowed to warm up to room temperature. These new selenium-nitrogen chlorides have been identified by complete elemental analyses and by infrared spectroscopy. The fundamental vibrations for the $Se_3N_2Cl^+$ cation were calculated using a general valence force-field approach and were used to assign the infrared spectrum of the cation. The reaction of Se₃N₂Cl₂ with SO₂Cl₂ in dichloromethane at -78 °C produces an unstable selenium-nitrogen chloride, characterized by ¹⁴N and ⁷⁷Se NMR spectroscopy, which decomposes to give a mixture of selenium chlorides and N₂.

Introduction

The development of inorganic selenium-nitrogen (Se-N) chemistry has been slow² compared to the substantial advances that have been made in the area of sulfur-nitrogen (S-N) chemistry in the last 20 years.³ In part, the preparation of new Se-N compounds has been impeded by the lack of suitable reagents. However, the cage molecule Se₄N₄ has been used as a source of both neutral and ionic Se-N fragments e.g. in the preparation of metal complexes of NSeCl⁴ and of the anions Se_3N -and $Se_2N_2^{2-5}$ The binary cation $Se_3N_2^{2+}$ has been prepared by the oxidation of Se_4N_4 with AsF_5 .⁶ Very recently the acyclic Se-N-Cl cations N(SeCl₂)₂⁺ and N(SeCl)₂⁺ have been obtained from (Me₃Si)₃N and SeCl₃⁺ or SeCl₄, respectively.^{7,8}

In S-N chemistry, the chlorides S₃N₂Cl₂, 1a, and, especially,

(NSCl)₃ are important starting materials.³ Furthermore, the preparation and structural characterization of the five-membered,

- Abstract published in *Advance ACS Abstracts*, September 1, 1993. (1) (a) The University of Calgary. (b) University of Oulu.
- (a) Klapötke, T. In The Chemistry of Inorganic Ring Systems; Steudel, R., Ed.; Elsevier Science Publishers: Amsterdam, 1992; pp 409-427. (b) Björgvinsson, M.; Roesky, H. W. Polyhedron 1992, 10, 2353.
- (a) Chivers, T. In The Chemistry of Inorganic Homo- and Heterocycles; Academic Press Inc.: London, 1987; Vol. 2, pp 793-869. (b) Oakley,
- Academic Press Inc.: London, 1767, vol. 2, pp 750-007. (c) Galaxy,
 R. T. Prog. Inorg. Chem. 1988, 36, 299.
 (4) (a) Adel, J.; Dehnicke, K. Chimia 1988, 42, 413. (b) Adel, J.; El-Kholi,
 A.; Willing, W.; Müller, U.; Dehnicke, K. Chimia 1988, 42, 70.
 (5) (a) Kelly, P. F.; Slawin, M. Z.; Williams, D. J.; Woollins, J. D. J. Chem.
 Soc., Chem. Commun. 1989, 408. (b) Kelly, P. F.; Parkin, I. P.; Slawin,
 A. G. Williams, I. D. J. Chem. Let Ed. Enal. 1989, 28 1047. A. M. Z.; Williams, J. D. Angew. Chem., Int. Ed. Engl. 1989, 28, 1047.
 (6) Awere, E. G.; Passmore, J.; White, P. S.; Klapötke, T. J. Chem. Soc.,
- Chem. Commun. 1989, 1415
- (7) Broschag, M.; Klapötke, T. M.; Tormieporth-Oelting, I. C.; White, P. J. Chem. Soc., Chem. Commun. 1992, 1390.
- (8) Wollert, R.; Höllwarth, A.; Frenking, G.; Fenske, D.; Goesmann, H.; Dehnicke, K. Angew. Chem., Int. Ed. Engl. 1992, 104, 1233.

mixed chalcogen-nitrogen chlorides SeS₂N₂Cl₂, 1b,⁹ and Se₂-SN₂Cl₂, 1c,¹⁰ have been reported recently. The silvlated sulfur diimide Me₃SiNSNSiMe₃ provides a rich source of acyclic and cyclic S-N derivatives,³ but the selenium analogue Me₃-SiNSeNSiMe₃ is thermally unstable¹¹ and has found limited applications.¹² By contrast, the selenium(II) reagent (Me₃- $Si_2NSeN(SiMe_3)_2$, 3, is stable and readily prepared,^{10,13} and this reagent can be used as a source of the NSeN fragment. For example, the reaction of 3 with SeCl₄ provides an easy route to Se₄N₄.^{10,14} Since both Se₂Cl₂ [formally selenium(I)] and SeCl₄ are readily available, it is possible to generate selenium in any formal oxidation state between +1 and +4 by using the appropriate stoichiometric mixtures of Se₂Cl₂ and SeCl₄.¹⁵ In this paper we describe the application of this strategy to the preparation of $Se_3N_2Cl_2$, 1d, and $(Se_3N_2Cl)_2$, 2d, from 3 as well as alternative routes to these Se-N chlorides.¹⁶ Force-field calculations of the fundamental vibrations for the Se₃N₂Cl⁺ cation have been carried out for comparison with the experimental infrared spectra.¹⁷ Attempts to prepare (NSeCl)₃ by the chlorination of 1d are also reported.

Experimental Section

Reagents and General Procedures. All solvents were dried and freshly distilled under a nitrogen atmosphere before use: dichloromethane (P_4O_{10}) , hexane (P_4O_{10}) , and diethyl ether (Na/benzophenone). All

- (9) Gillespie, R. J.; Kent, J. P.; Sawyer, J. F. Inorg. Chem. 1990, 29, 1251.
- Haas, A.; Kasprowski, J.; Angermund, K.; Betz, P.; Krüger, C.; Tsay, Y.-H.; Werner, S. Chem. Ber. 1991, 124, 1895. (10)
- Fockenberg, F.; Haas, A. Z. Naturforsch. 1986, 41b, 413. (12) Bestari, K.; Cordes, A. W.; Oakley, R. T.; Young, K. M. J. Am. Chem.
- Soc. 1990, 112, 2249.
- (13) Bjorgvinsson, M.; Roesky, H. W.; Pauer, F.; Stalke, D.; Sheldrick, G. M. Inorg. Chem. 1990, 29, 5140.
 (14) Siivari, J.; Chivers, T.; Laitinen, R. S. Inorg. Chem. 1993, 32, 1519.
 (15) This synthetic strategy has been used previously to produce sclenium in the strategy has been used previously to previously to previously to previously to previously to previously to p
- an average oxidation state +2.5 for the preparation of $(SSe_2N_2X)_2$ (X an average of the solution and the rate in the lenium halides: Wolmershäuser, G.; Brulet, C. R.; Street, G. B. Inorg. Chem. 1978, 17, 3586.
- (16) For a preliminary communication, see: Siivari, J.; Chivers, T.; Laitinen, R. Angew. Chem., Int. Ed. Engl. 1992, 31, 1518.
- (17) While this paper was in preparation, the structure of [Se3N2Cl] [GaCl4], obtained from the reduction of [N(SeCl)₂][GaCl₄] with Ph₃Sb, was reported: Wollert, R.; Neumüller, B.; Dehnicke, K. Z. Anorg. Allg. Chem. 1992, 616, 191.

© 1993 American Chemical Society

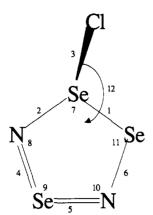


Figure 1. Numbering scheme for bonds and bond angles in Se₃N₂Cl⁺.

reactions and the manipulations of air- and moisture-sensitive reagents were carried out under an atmosphere of nitrogen (99.99% purity) passed through P4O10. The commercially available reagents Se2Cl2, (Me3-Si)2NH, and BuⁿLi (1.6 M solution in hexane) (all from Aldrich), Me₃-SiN₃ (Petrarch Systems), SeOCl₂ (Strem), and SO₂Cl₂ (Eastman) were used without further purification.

Literature procedures were used for the preparation of SeCl4¹⁸ and Se₄N₄.¹⁹ The compound Se₄N₄ was also prepared by the reaction of (Me₃Si)₂NLi and a mixture of Se₂Cl₂ and SeCl₄ using a recently described procedure.¹⁴ The reagent [(Me₃Si)₂N]₂Se [δ (¹H) (in CDCl₃) 0.15, δ (⁷⁷-Se) (in CH₂Cl₂) 1128.9 ppm [δ (¹⁴N) = -330 ppm]; cf. δ (¹H) 0.27,¹³ 0.33^{10} and $\delta(^{77}Se)$ 1130 ppm]¹⁰ was prepared by the reaction of (Me₃-Si)₂NLi with Se₂Cl₂ according to the method of Roesky et al.¹³ This product was purified by sublimation, and the residual yellow oil was identified as $[(Me_3Si)_2N]Se_2 [\delta(^1H) (in CDCl_3) 0.13, \delta(^{77}Se) (in CH_2-$ Cl₂) 1028.0 ppm; cf. $\delta(^{1}\text{H})$ (C₆D₆) 0.28, $\delta(^{77}\text{Se})$ (C₆D₆) 1029 ppm].¹⁰

Instrumentation. Infrared spectra were recorded as Nujol mulls between KBr or CsI disks on a Mattson 4030 spectrometer. ¹H NMR spectra were obtained by use of a Bruker AC 200 instrument, and chemical shifts are reported relative to neat Me4Si. The ⁷⁷Se and ¹⁴N NMR spectra were recorded with a Bruker AM-400 instrument operating at 76.31 and 28.92 MHz, respectively. The respective spectral widths were 100.00 and 29.41 kHz, and the resolutions were 6.1 and 3.6 Hz/data point. The ⁷⁷Se accumulations contained 20 000-30 000 transients, and those for nitrogen, ca. 200 000 transients. All ⁷⁷Se NMR spectra were referenced externally to a saturated solution of SeO₂ at room temperature. The chemical shifts are reported relative to neat Me₂Se at room temperature $[\delta(Me_2Se) = \delta(SeO_2) + 1302.6]$. The ¹⁴N NMR spectra are reported relative to neat CH₃NO₂. Elemental analyses for Se (as red selenium), N, and Cl (as AgCl) were obtained by using standard procedures²⁰ on freshly prepared samples that were mixed with a known amount of dry Nujol in order to minimize the risk of explosions.

Force-Field Calculations. The fundamental vibrations of Se₃N₂Cl⁺ were calculated using a general valence force-field approach.²¹ Initially a simple force field was chosen with 10 diagonal force constants and no interaction force constants. At a later stage of the force constant refinement, however, it became evident that there is interaction between the stretching modes involving bonds of the three-coordinated selenium (i.e. Se-Se, Se-N, and Se-Cl bonds) and the bending mode (Se-Se-Cl). Therefore two interaction force constants were introduced in the F-matrix. The molecular geometry of Se₃N₂Cl⁺ was estimated by use of a semiempirical PM3 geometry optimization with the program SPARTAN.²² The geometry thus obtained for 1d is consistent with that observed for $Se_3N_2Cl^+$ in the GaCl₄- salt¹⁷ and with those of 1b and 1c.^{9,10} The numbering scheme of the internal coordinates of Se₃N₂Cl⁺ is shown in Figure 1.

The initial values of the force constants were estimated on the basis of those in the $Se_2SN_2^{2+}$ and $Se_3N_2^{2+}$ cations.²³ By adjustment of the

Table I.	Infrared	Spectral	Data	(cm ⁻¹)	for Se ₃ N ₂ Cl ₂ ,	1d, and
(Se_3N_2Cl))2, 2d a					

_	Se ₃ N	$(Se_3N_2Cl)_2^{b,c}$			
eq 1	eq 2	eq 3	ref 25d	eq 4	eq 5
				876 s, sh	
829 s	829 s	829 s	828 s	829 s	829 s, sh
795 w	795 w	791 w	792 w	779 s sh	779 s. sh
	667 w	658 w		652 m	663 m
				639 m	639 w
584 s	584 s	584 s	584 m		
571 s	571 s	571 s	571 s	575 s	575 s
555 vs	556 vs	556 vs	554 s	556 s	556 s
					515 w
				469 w	
417 w	413 w	424 w		419 s	424 s
376 w			352 sh		
324 w	324 w		325 m	340 w	345 w
282 vs	282 vs	282 vs	281 s	290 s	295 s
245 s	245 s	249 s	244 s	245 m	245 m
			169 s		
			126 s		
			105 vw		

^a As Nujol mulls. In view of the explosive nature of 1d and 2d, it is recommended that appropriate precautions be taken in the preparation of mulls. The use of a metal spatula should be avoided. ^b The preparative methods for the different samples of 1d and 2d are represented by the equations in the text. ^c vs, very strong; s, strong; m, medium; w, weak; sh, shoulder. d Reaction of trimethylsilyl azide with selenium monochloride in a 4:2 molar ratio in CH₂Cl₂.

observed nine IR bands to the calculated ones, the diagonal force constants were refined by maintaining the existing interaction force constants. Subsequently, the diagonal force constants were held constant and the interaction force constants were refined. This cycle was repeated until no further change was observed. The final calculated and observed fundamental vibrations and the calculated potential energy distribution are shown in Table II. The stretching force constants are compared with those in related molecular species in Table III.

Preparation of Se₃N₂Cl₂. Caution! Dry Se₃N₂Cl₂ is explosive under the influence of heat or mechanical stress and should be stored and handled under a hydrocarbon solvent. The preparation of Se₃N₂Cl₂ should be limited to amounts of <1.0 g.

Method a. Reaction of [(Me₃Si)₂N]₂Se with Se₂Cl₂ and SeCl₄. A solution of [(Me₃Si)₂N]₂Se (0.200 g, 0.50 mmol) in CH₂Cl₂ (5 mL) was added to a mixture of Se₂Cl₂ (0.0345 g, 0.15 mmol) and SeCl₄ (0.143 g, 0.65 mmol) in CH₂Cl₂ (20 mL) at -78 °C. The dark red solution was allowed to warm to room temperature (20 h) to give a black precipitate, which was separated via a filter cannula, washed with CH_2Cl_2 (4 × 10 mL), and identified as Se₃N₂Cl₂ (0.16 g, 0.48 mmol, 95% yield). Anal. Calcd for Cl₂N₂Se₃: Cl, 21.12; N, 8.34; Se, 70.54. Found: Cl, 20.73, N, 9.02; Se, 70.44. The IR data are summarized in Table I. The ¹H NMR spectrum of the colorless filtrate showed only a signal for Me₃SiCl at 0.39 ppm.

Method b. Reaction of [(Me₃Si)₂N]₂Se with SeOCl₂. A solution of [(Me₃Si)₂N]₂Se (0.200 g, 0.50 mmol) in CH₂Cl₂ (5 mL) was added to a solution of SeOCl₂ (0.166 g, 1.0 mmol) in CH₂Cl₂ (15 mL) at -78 °C. The dark red solution was allowed to warm to room temperature to give a black precipitate, which was separated via a filter cannula, washed with CH_2Cl_2 (4 × 10 mL), and identified as $Se_3N_2Cl_2$ (0.15 g, 0.45 mmol, 89%). Anal. Calcd for Cl₂N₂Se₃: Cl, 21.12; N, 8.34; Se, 70.54. Found: Cl, 19.50; N, 8.08; Se, 73.0. The IR data are summarized in Table I. The ¹H NMR spectrum of the colorless filtrate showed signals of approximately equal intensity at 0.39 and 0.02 ppm, identified as Me₃-SiCl and (Me₃Si)₂O, respectively, by comparison with the chemical shifts obtained for the pure compounds in CH₂Cl₂.

Method c. Reaction of Me₃SiN₃ with Se₂Cl₂. A cold (-30 °C) solution of trimethylsilyl azide (0.140 g, 1.2 mmol) in CH₂Cl₂ (5 mL) was added dropwise to a solution of Se₂Cl₂ (0.410 g, 1.8 mmol) in CH₂Cl₂ (5 mL) at -30 °C. The reaction mixture was allowed to warm slowly to room temperature, with stirring, to give a black precipitate. This product was isolated by decantation, washed with small portions of CH2Cl2 until the filtrate was colorless, and identified as Se₃N₂Cl₂ (0.282 g, 0.84 mmol, 70% yield) by IR spectroscopy (see Table I). Anal. Calcd for Cl₂N₂Se₃:

Feher, F. In Handbook of Preparative Inorganic Chemistry; Bauer, G., Ed.; Enke: Stuttgart, Germany, 1975; Vol. 1, pp 416-417.
 Strecker, W.; Schwarzkopf, H. E. Z. Anorg. Allg. Chem. 1935, 221,

^{193.}

Cooper, C. W. In Selenium; Zingaro, R. A., Cooper, C. W., Eds.; Van Nostrand Reinhold Co.: New York, 1974; p 615. (20)

⁽²¹⁾ McIntosh, D. F.; Peterson, M. R. General Vibrational Analysis Programs Utilizing the Wilson GF Matrix Method for a General Unsymmetrized Molecule. QCPE Program No. 342, Bloomington, IN, 1977. (22) SPARTAN, Version 2.0, Wavefunction Inc., Irvine, CA, 1992.

Passmore, J. Private communication (23)

⁽²⁴⁾ Ferneris, R.; Hennies, C. E. J. Mol. Struct. 1970, 5, 449.

Cl, 21.12; N, 8.34; Se, 70.54. Found: Cl, 19.75; N, 6.90; Se, 70.00. The ¹H NMR spectrum of the filtrate showed only a signal for Me₃SiCl at 0.41 ppm.

When the same reaction was carried out using the stoichiometry described in the literature²⁵ but reducing the amounts of reagents by a factor of 4, Se₃N₂Cl₂ was obtained in 88% yield. Anal. Found: Cl, 20.09; N, 7.45; Se, 72.68. The 1H NMR spectrum of the filtrate exhibited singles at 0.26 and 0.39 ppm attributable to Me₃SiN₃ and Me₃SiCl, respectively

Preparation of (Se₃N₂Cl)₂. Caution! Dry (Se₃N₂Cl)₂ is explosive under the influence of heat or mechanical stress and should be stored and handled under a hydrocarbon solvent.

Method a. Reaction of Se4N4 with Se2Cl2. A solution of Se2Cl2 (0.050 g, 0.20 mmol) in CH₂Cl₂ (5 mL) was added to a slurry of Se₄N₄ (0.080 g, 0.20 mmol) in CH₂Cl₂ (10 mL) at -30 °C. The reaction mixture was allowed to warm slowly to room temperature with stirring. After 16 h the dark brown precipitate was separated via a filter cannula, washed with CH_2Cl_2 (4 × 10 mL), and identified as $(Se_3N_2Cl)_2$ (0.090 g, 0.075 mmol, 75%). Anal. Calcd for ClN₂Se₃: Cl, 11.80; N, 9.33; Se, 78.87. Found: Cl, 11.73; N, 10.25; Se, 76.16. The IR data are summarized in Table I.

Method b. Reaction of [(Me₃Si)₂N]₂Se with Se₂Cl₂ and SeCl₄. A solution of [(Me₃Si)₂N]₂Se (0.200 g, 0.50 mmol) in CH₂Cl₂ (5 mL) was added to a mixture of Se₂Cl₂ (0.056 g, 0.25 mmol) and SeCl₄ (0.110 g, 0.50 mmol) in CH₂Cl₂ (20 mL) at -78 °C. The reaction mixture became dark red immediately and, upon warming to room temperature, produced a dark brown precipitate and a colorless filtrate. The dark brown precipitate was separated by decantation, washed with CH_2Cl_2 (4 × 10 mL), and identified as $(Se_3N_2Cl)_2$ (0.145 g, 0.121 mmol, 97%). Anal. Calcd for ClN₂Se₃: Cl, 11.80; N, 9.33; Se, 78.87. Found: Cl, 12.42; N, 8.50; Se, 77.50. The IR data are summarized in Table I. The ¹H NMR spectrum of the filtrate showed only a signal for Me₃SiCl at 0.39 ppm.

Attempted Preparation of (NSeCl)3: Reaction of Se3N2Cl2 with SO2-Cl₂. A mixture of Se₃N₂Cl₂ (0.080 g, 0.24 mmol) and an excess of SO₂-Cl₂ (0.165 g, 1.20 mmol) in CH₂Cl₂ (2 mL) was transferred to an 8-mm o.d. tube at -78 °C that was subsequently sealed under vacuum. When this mixture was allowed to warm up to room temperature, a deep red solution and a white precipitate were formed. In a separate experiment, conducted in an open vessel under nitrogen, the white precipitate was identified as SeCl₄ (IR spectrum).¹⁸ The ¹⁴N NMR spectrum of the red solution, obtained by placing the 8-mm tube inside a 10-mm o.d. tube containing D_2O , gave only one signal at +242 ppm. The ⁷⁷Se NMR spectrum of the same solution gave rise to three signals at +1778 (cf. +1762 for SeCl₂ in CH₂Cl₂),²⁶ +1485, and +1285 ppm (cf. 1280 for Se₂Cl₂).²⁶

Results and Discussion

Preparation and Characterization of Se₃N₂Cl₂. The reaction of $Se[N(SiMe_3)_2]_2$ with a mixture of selenium chlorides designed to give an Se:Cl ratio of 1:3 in CH₂Cl₂ produced 3-chloro-1,3,4,2,5triselenadiazolium chloride, $Se_3N_2Cl_2$, 1d, in 95% yield according to eq 1. The ¹H NMR spectrum of the filtrate revealed the exclusive presence of chlorotrimethylsilane.

$$3[(Me_{3}Si)_{2}N]_{2}Se + 4SeCl_{4} + Se_{2}Cl_{2} \rightarrow$$

$$3Se_{3}N_{2}Cl_{2} + 12Me_{3}SiCl (1)$$

The product 1d was obtained as an explosive, black powder, which is insoluble in organic solvents and in liquid SO_2 . This compound is both moisture-sensitive and thermally unstable at room temperature.²⁷ Consequently, it is essential to carry out elemental analyses on freshly prepared samples. In addition, it is necessary to mix these samples with a weighed amount of Nujol in order to minimize the risk of explosions during the analytical procedures. Under these circumstances, it was possible to obtain good analytical data (Cl, N, Se) for 1d prepared in this manner.

The same compound was also obtained by two other procedures, which, on the basis of analytical data, give slightly less pure products than eq 1. The reaction of $[(Me_3Si)_2N]_2Se$ with selenium oxo dichloride in CH₂Cl₂ proceeded cleanly at room temperature to give Se₃N₂Cl₂ in 89% yield. The ¹H NMR spectrum of the filtrate revealed only the presence of chlorotrimethylsilane and hexamethyldisiloxane consistent with the stoichiometry shown in eq 2.

$$[(Me_3Si)_2N]_2Se + 2SeOCl_2 \rightarrow Se_3N_2Cl_2 + 2Me_3SiCl + (Me_3Si)_2O + \frac{1}{2}O_2 (2)$$

The third method for the preparation of 1d involves the reaction of selenium monochloride with trimethylsilylazide. This reaction has been reported to give Se₄N₂, but no analytical data were given.²⁵ We found, however, that when the reaction was carried out using the stoichiometry described in the literature,²⁵ the filtrate contained substantial amounts of unreacted trimethylsilyl azide (¹H NMR). Consequently, we adjusted the stoichiometry to that illustrated in eq 3 and obtained $Se_3N_2Cl_2$ in 70% yield. Trimethylsilyl azide was completely consumed and chlorotrimethylsilane was the exclusive product in the filtrate as determined by the ¹H NMR spectrum.

 $3Se_2Cl_2 + 2Me_3SiN_3 \rightarrow 2Se_3N_2Cl_2 + 2Me_3SiCl + N_2$ (3)

In fact, the reaction of selenium monochloride with trimethylsilyl azide in dichloromethane was first reported by Passmore and co-workers 10 years ago.28a These authors described their product as a blue-black, explosive solid and suggested that the IR spectrum was "not inconsistent with the formation of Se-N compounds, if not $(SeN)_x$."

The insolubility and explosive nature of $Se_3N_2Cl_2$ severely limits its characterization by spectroscopic methods, e.g. NMR and mass spectroscopy. The IR spectra of $Se_3N_2Cl_2$ prepared by different methods are compared in Table I.28b The congruence between the IR data for samples prepared by the three different methods represented by eqs 1-3 provides unequivocal evidence that the same product is formed in all three reactions. Furthermore, the similarity between these data and those reported by Dehnicke et al.²⁵ strongly suggest that their product was also $Se_3N_2Cl_2$ and not Se_4N_2 as claimed. There are only a few reports of IR spectroscopic studies for Se-N rings. From the published IR spectra of $Se_4N_4^{29}$ and $Se_3N_2^{2+,30}$ it can be inferred that ν (Se=N) and ν (Se-N) will be observed in the regions ca. 800-900 and ca. 500-600 cm⁻¹, respectively. Our force-field calculations (see Table II) indicate that the strong band at 829 cm⁻¹ and the weak band at 795 cm⁻¹ are both attributable to the stretching modes of the N=Se=N fragment, while the two bands at 584 and 571 cm⁻¹ are mainly due to ν (Se–N) modes, though minor contributions from the bending modes can be seen in the potential energy distribution shown in Table II. The main contribution to the weak band at 324 cm⁻¹ is ascribed to ν (Se-Se), and that of the strong band at 282 cm⁻¹, to ν (Se–Cl).³¹ The structure of 1d is represented as ionic, Se₃N₂Cl⁺Cl⁻, by analogy with those of 1a, ³² 1d, ⁹ and 1c.¹⁰ However, we note that covalent forms of 1b,c, in which both chlorines are attached to the same

(30) Awere, E. G.; Passmore, J.; White, P. J. Chem. Soc., Dalton Trans. 1993, 299.

⁽²⁵⁾ Dehnicke, K.; Schmock, F.; Köhler, K. F.; Frenking, G. Angew. Chem., Int. Ed. Engl. 1991, 30, 577. (26) Lamoureux, M.; Milne, J. Polyhedron 1990, 9, 589

⁽²⁷⁾ Cl analyses for two different 1-week-old samples gave low values, 13.4 and 15.8%, indicating that the compound decomposes slowly at room temperature with loss of chlorine. Samples of 1d should be stored at -20 °C in order to minimize this decomposition.

^{(28) (}a) Kennett, F. A.; MacLean, G. K.; Passmore, J.; Rao, M. N. S. J. Chem. Soc., Dalton Trans. 1982, 851. (b) A blue-black product obtained from the reaction of Me₃SiN₃ with SeBr₄ in acetonitrile was reported to exhibit IR bands at 815 s, 790 w, 572 s, and 545 m cm⁻¹ and, therefore, may contain Se₃N₂Cl₂.
(29) Adel, J.; Ergezinger, C.; Figge, R.; Dehnicke, K. Z. Naturforsch. 1988,

⁴³b, 639.

A band at 340 cm⁻¹ has been attributed, without explanation, to vso-C for 1c in the text of ref 10, but the low-frequency bands are reported to occur at 358, 309, and 297 cm⁻¹ in the experimental section

⁽³²⁾ Zalkin, A.; Hopkins, T. E.; Templeton, D. H. Inorg. Chem. 1968, 30, 2851.

Table II. Calculated and Observed Fundamental Vibrations (cm^{-1}) of Se₃N₂Cl⁺ and the Calculated Potential Energy Distribution (%) along the Internal Coordinates^a

				stretching modes				bending modes							
calc ob		1, (Se-Se)	2, v(Se-N)	3, µ(Se-Cl)	4, v(Se=N)	5, ν(Se—N)	6, v(Se-N)	$\frac{7}{\delta(N-Se-Se)}$	8, δ(Se—N-Se)	9, δ(N—Se—N)	$ \begin{array}{c} 10, \\ \delta(\mathbf{Se-N=Se}) \end{array} $	11, δ(Se-Se-N)	12, δ(Se-Se-Cl)	tors	wage
829 82	9				40	45									
795 79	5		10		45	35	10								
584 58	4		10				40				20				
571 57	1		45				20		15						
555 55	5													90	
417 41	7												30	25	20
324 32	4	40											25	15	
282 28	2			65											
245 24	5	40		20									25		
209			10				10		20	20	15				
183								15	10		20	15			10
109														15	45

^a For the definition of internal coordinates, see Figure 1. The potential energy contributions have been rounded to the nearest 5%. Minor contributions <10% are not shown. ^b Torsional. ^c Wagging.

force cons, N m ⁻¹	Se ₃ N ₂ Cl ^{+ a}	Se ₃ N ₂ ^{2+ b}	SeNSNSe ²⁺	Se ₂ Cl ₂ ^c
∫SeSc	190	222	200	198
fse-N	220, 231	292		
fs-N	391	390	404	
Jse-Ci	117			192

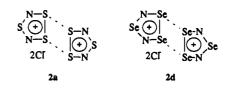
^a This work. ^b Reference 23. ^c Reference 24.

Table III. Stretching Force Constants of Se₃N₂Cl⁺

selenium atom, have been structurally characterized.^{9,10} The highly insoluble character of 1d is consistent with an ionic structure and may also indicate significant intermolecular interactions as found for Se₄N₄.³³

Since the $Se_3N_2^{2+}$ cation has been characterized recently,³⁰ we attempted to convert 1d to $[Se_3N_2][AsF_6]_2$ by the reaction with silver hexafluoroarsenate in CH2Cl2 or liquid SO2. However, no significant reaction was observed over a period of several days probably due to the insolubility of 1d. Attempts to convert 1d to more soluble salts by treatment with chloride ion acceptors such as AlCl₃ or SnCl₄ were also unsuccessful probably for the same reason.17

The reaction of $S_3N_2Cl_2$, 1a, with anhydrous formic acid is known to produce the soluble compound S₃N₂O in good yields.³⁴ However, no reaction was observed between 1d and formic acid even at reflux and Se_3N_2O could not be obtained by this route.


Preparation and Characterization of (Se₃N₂Cl)₂. The compound (S₃N₂Cl)₂, 2a, is one of the oldest known S-N compounds.³⁵ The dimeric structure of this dark green (almost black), highly insoluble solid has been established only recently.³⁶ It can be prepared in essentially quantitative yields by the reaction of S_4N_4 with S_2Cl_2 , either in cold nitromethane or without a solvent.³⁵ Consequently we started our attempts to prepare $(Se_3N_2Cl)_2$ by investigating the corresponding reaction of Se₄N₄ and SeCl₂ in dichloromethane. This reaction proceeded in a straightforward manner to give $(Se_3N_2Cl)_2$ in 75% yield (eq 4).

$$\operatorname{Se}_{4}\operatorname{N}_{4} + \operatorname{Se}_{2}\operatorname{Cl}_{2} \rightarrow (\operatorname{Se}_{3}\operatorname{N}_{2}\operatorname{Cl})_{2}$$
 (4)

The product $(Se_3N_2Cl)_2$ is an explosive, insoluble dark brown powder, which is moisture-sensitive and decomposes slowly at room temperature. Although it is not as prone to explosions as Se₃N₂Cl₂, the same precautions were observed in handling this compound. Complete elemental analyses were in good agreement

- (33) Bärnigshausen, H.; v. Volkmann, T.; Jander, J. Acta Crystallogr. 1966, 21, 751.
- (34) Roesky, H. W.; Schraper, W.; Petersen, O.; Müller, T. Chem. Ber. 1977, 110, 2695.
- (35) Demarcay, E. Compt. Rend. 1880, 91, 854.
 (36) Small, R. W. H.; Banister, A. J.; Hauptman, Z. V. J. Chem. Soc., Dalton Trans. 1984, 1377.
- (37) (a) Jolly, W. L.; Maguire, K. D. Inorg. Synth. 1967, 9, 102. (b) Alange, G. G.; Banister, A. J.; Bell, B. J. Chem. Soc., Dalton Trans. 1972, 2399.

with the empirical formula Se_3N_2Cl , and a dimeric structure, 2d, is suggested by analogy with that of 2a.³⁶

Similar structures have been proposed for the mixed S-Se analogues $(SeS_2N_2Cl)_2$, 2b,¹⁰ and $(Se_2SN_2Cl)_2$, 2c,¹⁵ but these have not been confirmed by X-ray crystallography. The dimer 2d may also be obtained in essentially quantitative yield by adaptation of the procedure used by Wolmershäuser et al. for the preparation of 2c.¹⁵ The ¹H NMR spectrum of the filtrate confirmed the complete conversion of [(Me₃Si)₂N]₂Se into chlorotrimethylsilane according to eq 5.

$$2[(Me_{3}Si)_{2}N]_{2}Se + Se_{2}Cl_{2} + 2SeCl_{4} \rightarrow$$

$$(Se_{3}N_{2}Cl)_{2} + 8Me_{3}SiCl (5)$$

The IR spectroscopic data for (Se₃N₂Cl)₂ prepared by eqs 4 and 5 are compared in Table I. Although there are some discrepancies for the weak bands, the good agreement between the frequencies of the strong IR vibrations, together with the complete analytical data, leave no doubt that $(Se_3N_2Cl)_2$ is produced in both reactions. Not surprisingly, the IR spectrum of 2d closely resembles that of 1d. Thus, the bands at 829 and 779 cm⁻¹ for 2d are assigned to $\nu_{as}(NSeN)$ and $\nu_{a}(NSeN)$, respectively. The strong bands at 556 and 575 cm⁻¹ are attributed to Se-N vibrations.

Reaction of $Se_3N_2Cl_2$ with Sulfuryl Chloride. The chlorination of $S_3N_2Cl_2$, 1a, with either Cl_2 or SO_2Cl_2 produces (NSCl)₃,³⁷ an important reagent in S-N chemistry.³ It was, therefore, of interest to discover whether the selenium analogue (NSeCl)₃ could be prepared in a similar manner. In preliminary experiments it was demonstrated that the reaction of 1d with sulfuryl chloride in CH₂Cl₂ in molar ratios varying from 1:1 to 1:6 produces a red solution and a white precipitate of selenium tetrachloride. Subsequently, the reaction was carried out in a sealed tube under vacuum using a molar ratio of 1:4 and the soluble products were investigated by ^{14}N and $^{77}Se\,NMR$ spectroscopy. The red solution exhibits a ¹⁴N NMR resonance at +242 ppm ($\nu_{1/2}$ = 468 Hz) and ⁷⁷Se NMR resonances at +1778 (SeCl₂), +1485, and +1285 ppm (Se_2Cl_2) . Thus the red color of the solution may be due to the formation of Se₂Cl₂ rather than the nitrogen-containing species. After 1 week at 23 °C the same sample showed only a very weak ¹⁴N signal at +242 ppm and a strong resonance at -70

⁽³⁸⁾ McIntyre, D. D.; Apblett, A. W.; Lundberg, P.; Schmidt, K. J.; Vogel, H. J. J. Magn. Reson. 1989, 83, 377.

ppm attributable to N₂,³⁸ presumably formed by the decomposition of the +242 ppm species. In the ⁷⁷Se NMR spectrum the signal at +1485 ppm was no longer present in the 1-week-old sample, while those attributable to SeCl₂ and Se₂Cl₂ had intensified.

The NMR spectroscopic evidence suggests that the chlorination of 1d produces a thermally unstable Se-N chloride, which decomposes to give a mixture of selenium chlorides and dinitrogen. The most likely candidates are either ClN—SeCl₂ or Cl₂NSeCl₃. The preparation of the thermally unstable compounds R_FN —SeCl₂ ($R_F = CF_3$, C_2F_3) has been reported.³⁹ These pale yellow derivatives decompose quickly at room temperature to give R_FN —NR_F, SeCl₄, and Se₂Cl₂. By analogy, the decomposition of ClN—SeCl₂ could give rise to N_2 , SeCl₄, and Se₂Cl₂.⁴⁰ We note that the ¹⁴N chemical shift of (Me₃Si)₂NSeN(SiMe₃)₂ occurs at ca. -330 ppm⁴¹ so it is unlikely that the ¹⁴N resonance at +242 ppm is caused by a singly-bonded Se–N species such as Cl₂NSeCl₃.

Conclusion

The selenium-nitrogen halides $Se_3N_2Cl_2$ and $(Se_3N_2Cl)_2$ have been prepared by several procedures. The purest products are obtained from the reaction of $[(Me_3Si)_2N]_2Se$ with a mixture of $SeCl_4$ and Se_2Cl_2 designed to give the appropriate Se:Cl ratio.

Scheme I. Use of
$$[(Me_3Si)_2N]_2Se$$
 as a Reagent for the Preparation of Se-N Compounds^{*a*}
Se₄N₄

$$(SeS_2N_2Cl)_2 \xleftarrow{(i)} [(Me_3Si)_2N]_2Se \xrightarrow{(iii)} (Se_3N_2Cl)_2 \downarrow (iv) \text{ or } (v) Se_3N_2Cl_2$$

 a (i) SCl₂;¹⁰ (ii) SeCl₄;^{10,14} (iii) $^1/_2$ Se₂Cl₂ + SeCl₄; (iv) $^1/_3$ Se₂Cl₂ + $^4/_3$ SeCl₄; (v) SeOCl₂.

The versatility of this reagent for the preparation of simple Se–N compounds is noteworthy (see Scheme I). Force-field calculations indicate that $Se_3N_2Cl_2$ contains the $Se_3N_2Cl^+$ cation. However, preliminary investigations indicate that the explosive nature and insolubility of $Se_3N_2Cl_2$ will impose limitations on its use as a reagent in Se–N chemistry. The chlorination of $Se_3N_2Cl_2$ produces a thermally unstable Se–N chloride, possibly ClN—SeCl₂, rather than (NSeCl)₃.

Acknowledgment. We thank the NSERC (Canada) and Academy of Finland for financial support. J.S. was an exchange student at The University of Calgary supported by the Neste Oy Foundation, Espoo, Finland. We are grateful to Professor J. Passmore (University of New Brunswick, Fredericton, Canada) for providing the values of the force constants of $Se_2SN_2^{2+}$ and $Se_3N_2^{2+}$ prior to publication. We also thank Professor K. Dehnicke for a reprint of ref 17.

⁽³⁹⁾ Thrasher, J. S.; Bauknight, Jr., C. W.; DesMarteau, D. D. Inorg. Chem. 1985, 24, 1598.

⁽⁴⁰⁾ The diazene CIN—NCl is unknown, presumably due to rapid decomposition to N₂ and Cl₂.
(41) Chivers, T.; Haapaniemi, E.; Laitinen, R.; Siivari, J. Presented at the

⁽⁴¹⁾ Chivers, T.; Haapaniemi, E.; Laitinen, R.; Silvari, J. Presented at the 1st Symposium on Synthetic Chemistry, Oulu, Finland, May 1993; Abstract P.16.